Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available March 1, 2026
- 
            Abstract Polymeric donors of gasotransmitters, gaseous signaling molecules such as hydrogen sulfide, nitric oxide, and carbon monoxide, hold potential for localized and extended delivery of these reactive gases. Examples of gasotransmitter donors based on polysaccharides are limited despite the availability and generally low toxicity of this broad class of polymers. In this work, we sought to create a polysaccharide H2S donor by covalently attachingN‐thiocarboxyanhydrides (NTAs) to amylopectin, the major component of starch. To accomplish this, we added an allyl group to an NTA, which can spontaneously hydrolyze to release carbonyl sulfide and ultimately H2S via the ubiquitous enzyme carbonic anhydrase, and then coupled it to thiol‐functionalized amylopectin of three different molecular weights (MWs) through thiol‐ene “click” photochemistry. We also varied the degree of substitution (DS) of the NTA along the amylopectin backbone. H2S release studies on the six samples, termed amyl‐NTAs, with variable MWs (three) and DS values (two), revealed that lower MW and higher DS led to faster release. Finally, dynamic light scattering experiments suggested that aggregation increased with MW, which may also have affected H2S release rates. Collectively, these studies present a new synthetic method to produce polysaccharide H2S donors for applications in the biomedical field.more » « less
- 
            Luscombe, Christine; Anastasaki, Athina; Du_Prez, Filip; Frey, Holger; Hu, Rongrong; Klausen, Rebekka; Konkolewicz; Li, Zhibo; Li, Zi_Chen; Sardon, Haritz (Ed.)A block copolymer with the structure ethylcellulose-block-poly(benzy glutamate) was synthesizedviaring-opening polymerization and used as a compatibilizer to produce blends of ethylcellulose and poly(ethylene terephthalate).more » « less
- 
            We report a polymeric version of Piloty's acid where the release rate of HNO can be tuned by changing the block ratios of PEG- b -poly(Piloty's acid) in a block copolymer system. The poly(Piloty's acid) block was derived from poly(styrene sulfonate), and HNO release from the block copolymers varied by as much as an order of magnitude via increasing the length of the poly(Piloty's acid) block. We anticipate this study will guide the development of HNO-releasing polymers to measure the effects of sustained HNO delivery in biological systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
